Manufacturing Trauma Fracture Fixation Implants: Partnering with Invibio

AUTHOR: Sherri Gambill – Invibio Biomaterial Solutions

Overview
Metal implants have been used for over 50 years with generally good outcomes, but in some fractures, complications related to non-unions, delayed unions, and implant failure continue to be a challenge, with overly stiff constructs as a reported risk factor.1,2 PEEK-OPTIMA™ Ultra-Reinforced is a composite material growing in popularity as an alternative to stainless steel and titanium for fracture fixation devices, and has seen clinical success in a variety of application areas.3-6

PEEK-OPTIMA Ultra-Reinforced combines the high performance material properties of PEEK-OPTIMA Polymer with the strength imparted by continuous carbon fibers. When manufactured into trauma devices, PEEK-OPTIMA Ultra-Reinforced enables semi-rigid fixation with improved fatigue and imaging properties over metal.7 Unlike metals, the carbon fiber PEEK offers the ability to tailor the mechanical properties of the implant without altering the geometry, offering increased design flexibility to meet the device requirements.

Partnering with Invibio enables medical device companies to expand their trauma product offerings beyond metal technologies at a fraction of the time and investment it would take to translate from a metal to composite solution internally. Medical device manufacturers can leverage Invibio’s expertise in composite technology, state-of-the-art tools, and dedicated manufacturing facility to bring new fracture management solutions to market.

Idea to Innovation – do more with fewer resources
Medical device manufacturers are experts in implant design, but converting those designs to composites requires time and money to build the knowledge, processing capabilities and supply chains internally. Invibio has invested heavily to build the capabilities required to deliver these components including: basic research, composite processing knowledge, and application-specific knowledge. A dedicated staff, assembled from the polymer/composite and medical device industries, works with partners from concept through production to overcome design and manufacturing challenges by offering comprehensive assistance, including design for manufacturing, prototyping, testing, and regulatory support. Invibio’s state-of-the-art manufacturing facilities are operated under ISO 13485 certified quality management system and feature dedicated medical testing laboratories and a controlled manufacturing environment. These investments enable medical device companies to iterate quickly with low risk and decreased investment compared to developing on their own.

Components of any size and length can be produced, from small extremity plates to large distal femur plates. The process of plate creation is controlled by Invibio, from monomer through plate production. The process begins with the production of PEEK-OPTIMA Natural, which is then combined with carbon fibers into a tape. The tape is cut and compression molded into semi-finished components, and then finished to the customer’s design specifications and inspected.

Clinical Relevance – why change materials?
Locked plating is a significant advancement in fracture care resulting in improved patient outcomes for certain fractures.8 However, early reports of clinical success were followed by reports of clinical failures, which suggested that in some applications, the plate and screw construct may be too rigid, inhibiting the interfragmentary micromotion necessary to permit secondary healing by callus formation.9,10 Distal femur fractures are an often cited example where overly stiff locking plate constructs may lead to healing difficulties, with recent studies reporting non-union rates up to 20%.2,11-15

Strategies have been developed for reducing construct stiffness in three areas: (1) modifications in the surgical technique for existing plates and screws, (2) new screw designs, and (3) material advancements. Focusing on material advancements, studies have shown that a material with a lower elastic modulus may improve outcomes. More flexible titanium plates produce more callus and have fewer non-unions than stainless steel plates.2,9,14-16 PEEK-OPTIMA Ultra-Reinforced provides another alternative to the goal of more flexible fixation.
Testing demonstrates a plate produced from PEEK-OPTIMA Ultra-Reinforced can have reduced stiffness and greater fatigue strength than a titanium plate of the same geometry.\(^7\)

Performance – Design Flexibility through Material

Carbon Fiber PEEK polymer plate stiffness and strength come not only from the plate geometry, but from the orientation of the carbon fibers throughout the plate, offering a huge array of choices to meet design specifications. This design flexibility is why carbon fiber devices have been adopted not only in medical devices, but in many advanced applications including the aerospace and automotive industries.

The plate geometry does not need to change in order to alter mechanical properties. In a 4-point bend test (per ASTM F382) of four identical generic distal femur plates, changes to the order of fiber orientation enabled a reduction in stiffness without a significant impact to the yield strength. In the example of Variant A to B, reducing stiffness by 12% resulted in a loss of yield strength of only 2% (ref. figure 1).\(^7\)

ABOUT THE AUTHOR

Sherri Gambill

Sherri (Wykosky) Gambill is currently Trauma Technology Manager at Invibio Biomaterial Solutions where she is responsible for product development. Previously, as Business Development Associate, she maintained relationships across client organizations as they adopted new biomaterials. Prior to Invibio, Sherri was a Product Development Engineer at DePuy Synthes and BD Ophthalmic Systems, where she designed and developed implants and instrumentation for orthopaedic trauma and glaucoma treatment. In 2006, Sherri received a Bachelor of Science (BS) degree in Bioengineering at the University of Pennsylvania in Philadelphia, PA, USA.

REFERENCES

Copyright © 2017 Invibio Ltd. INVIBIO™, PEEK-OPTIMA™, INVIBIO BIOMATERIAL SOLUTIONS™ are trademarks of Victrex plc or its group companies. All rights reserved.
Victrex plc and/or its group companies ("Victrex plc") believes that the information in this document is an accurate description of the typical characteristics and/or uses of the product or products, but it is the customer’s responsibility to thoroughly test the product in each specific application to determine its performance, efficacy, and safety for each end-use product, device or other application. Suggestions of uses should not be taken as inducements to infringe any particular patent. The information and data contained herein are based on information we believe reliable. Mention of a product in this document is not a guarantee of availability.

Victrex plc reserves the right to modify products, specifications and/or packaging as part of a continuous program of product development. Victrex plc makes no warranties, express or implied, including, without limitation, a warranty of fitness for a particular purpose or of intellectual property non-infringement, including, but not limited to patent non-infringement, which are expressly disclaimed, whether express or implied, in fact or by law.

Further, Victrex plc makes no warranty to your customers or agents, and has not authorized anyone to make any representation or warranty other than as provided above. Victrex plc shall in no event be liable for any general, indirect, special, consequential, punitive, incidental or similar damages, including without limitation, damages for harm to business, lost profits or lost savings, even if Victrex has been advised of the possibility of such damages regardless of the form of action.

Supporting information is available on request for all claims referenced in this document.

Copyright ©2017 Invibio Ltd. INVIBIO™, JUVORA™ PEEK-OPTIMA™, INVIBIO BIOMATERIAL SOLUTIONS™ are trademarks of Victrex plc or its group companies. All rights reserved.